

Mechanism Feasibility Design

1

Tutorial Session Notes

Dr. James Gopsill

Before Easter

- 1. Types of Gear
- 2. Gear Definitions
- 3. Gear Forces
- 4. Multi-Stage Gearbox Example
- 5. Gearbox Design Report Section

2017

You should have evaluated a number of motor, gear ratio and damping values

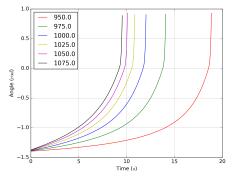
What are your cases?

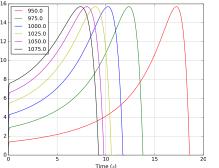
Case No.	Motor	Gear Ratio	Damping
1			
2			

Damping

You should have evaluated a number of motor, gear ratio and damping values

Case No.

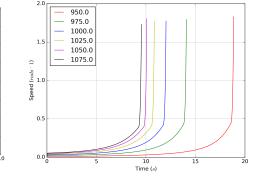

1


2

What are your cases?

(M)

Plotting the results



...

...

Motor

...

...

Gear Ratio

...

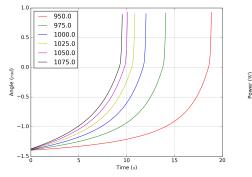
...

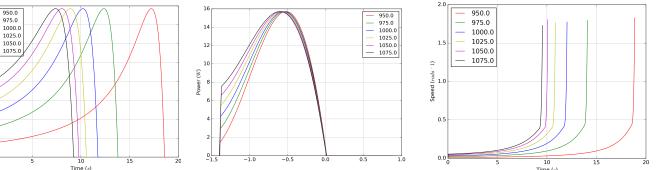
Damping

...

...

You should have evaluated a number of motor, gear ratio and damping values


Case No.


1

2

What are your cases?

Plotting the results

Motor

...

...

Gear Ratio

...

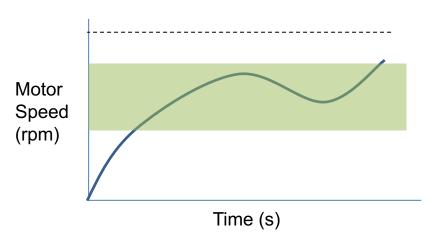
...

Bring key results together and compare your cases

What are your metrics for comparison?

Case No.	Deployment Time	Energy Required	Smoothness of Motion
1			
2			

Design & Manufacture 2 – Mechanism Feasibility Design Session 5


bristol.ac.uk

You should have evaluated a number of motor, gear ratio and damping values

- What are you investigating?
 - Energy used
 - Smoothness of motion
 - Motor working within its operating window
 - ...?
- What information can the model give you to investigate these?

For example: Motor working within its operating window

• Plot Motor Speed or Torque over time with graph showing the ideal window of operation and the limits of operation

You should have evaluated a number of motor, gear ratio and damping values

- From this analysis and comparative work, your should have selected your
 - Motor
 - Gear Ratio
 - Level of Damping

This Week

- Generate an initial spur and helical gear set to drive your mechanism
- Select type and refine gears
 - Evaluate against forces, packaging and suitability for the application
 - You may have to compromise on your ideal gear ratio from your deployment model

8

- Make sure you record you rationale
 - Tooth Hunting
 - Qualitative affordances of each type of gear

Gear Stage	1	2	3	
VR				
Combined VR				
Module				
Pinion Teeth				
Pinion PCD (mm)				
Wheel Teeth				
Wheel PCD (mm)				
Hunting Tooth Frequency				
Efficiency				
Pinion Speed (rev/min)				
Wheel Speed (rev/min)				
Pinion Torque (Nm)				
Wheel Torque (Nm)				
Pinion Forces				
Tangential Force (kN)				
Separating Force (kN)				
Resultant Force (kN)				

Lecture 5 contains an example of the process as well as the mathematics

This afternoons lecture

Submission Criteria & Guidelines

10

2017