

Mechanism Feasibility Design Task Dr. James Gopsill

1

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

Contents

- 1. Last Week
- 2. Types of Gear
- 3. Gear Definitions
- 4. Gear Forces
- 5. Multi-Stage Gearbox Example
- 6. Gearbox Design Report Section
- 7. This Weeks Task

Last Week

Systems Modelling in Simulink

- Demo: Stopping the simulation at a specific point
- Demo: Adding damping to a system
- Demo: Four-bar mechanism

Where you should be at:

- Mechanism modelled in Simulink
- Evaluated a range of motors, gear ratios and level of damping

Product Design Specification Concept Design Concept Selection Stage-Gate Deployment Modelling Motor, Gear Ratio & Damping Selection

Gearbox Design

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

2017

Types of Gear

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

Spur

- Applications
 - Low/Moderate speed environments (Pitch Line Velocity < 25ms⁻¹)
 - Engines, Power Plants, Fuel Pumps, Washing Machines, Rack & Pinion mechanisms
- Pros
 - Can transmit large amounts of power (50,000kW)
 - High Reliability
 - Constant Velocity Ratio
 - Simple to Manufacture
- Cons
 - Initial contact is across entire tooth width leading to higher stresses

- Noise at high speeds
- Can't transfer power between non-parallel shafts

Helical

- Applications
 - High speed environments (> 25ms⁻¹)
 - Automotive industry
 - Elevators, conveyors
- Pros
 - Smoother running compared to spur
 - Higher load transfer per width of gear compared to spur
 - Typically longer maintenance cycles
- Cons
 - Thrust bearings required to counter axial forces
 - Greater heat generation compared to spur due to gear mating

6

• Typically less efficient than spur gears

Herringbone

- Applications
 - 3D Printers
 - Heavy Machinery
- Pros
 - Smoother power transmission
 - Resistant to operation disruption from missing/damaged teeth
- Cons
 - Difficult to manufacture and hence more expensive

Epicyclic

- Applications
 - Lathes, hoists, pulley blocks, watches
 - Automatic Transmissions
 - Hybrid Vehicles (engine and motor)
- Pros
 - Higher efficiency
 - Higher power density
 - Accurate gearing
 - Packaging (Achieve higher ratios in the same area)
 - In-line input-output shafts
- Cons
 - Loud operation
 - High accuracy manufacturing required to ensure equal load sharing

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

Worm

- Applications
 - Elevators, hoists
 - Packaging equipment
 - Rock Crushers
 - Tuning Instruments
- Pros
 - Near silent and smooth operation
 - Self-locking
 - Occupy less space of equivalent spur gear ratio
 - High velocity ratio can be attained within a single step (approx. 100:1)

- Absorb shock loading
- Cons
 - Expensive to manufacture
 - Higher power losses compared
 - Greater heat generation due to increased teeth contact

Bevel

- Applications
 - Differential drives (e.g. vehicles)
 - Hand drills
 - Assembly machinery
- Pros
 - Change direction of power transmission

- Cons
 - Difficult to manufacture
 - Precision mountings

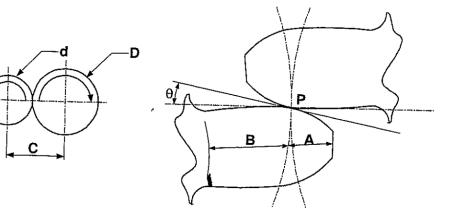
Car Convertible Roof

- Worm Gear to Multi-Stage Gearbox
- We will solely design a multi-stage spur/helical gear set

2017

Gear Definitions

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5



- Pinion
 - Smaller Gear
 - (*n*, *d*) = number of teeth, PCD
- Wheel
 - Larger Gear
 - (*N*, *D*) = number of teeth, PCD

13

• Velocity Ratio

$$VR = \frac{N}{n} = \frac{D}{d}$$

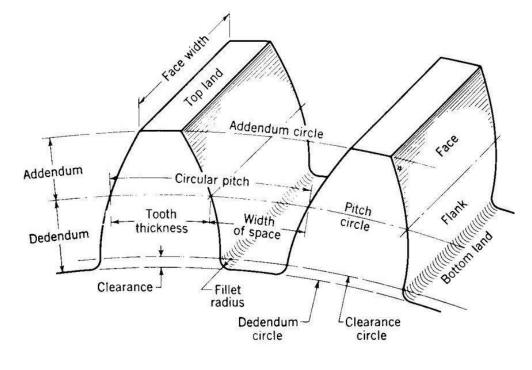
- Examples
 - Pinion has 20 teeth and Wheel has 40

$$VR = \frac{40}{20} = 2$$

• If connected to a wheel of 60 and pinion of 20

$$VR = \frac{40}{20} \times \frac{60}{20} = 6$$

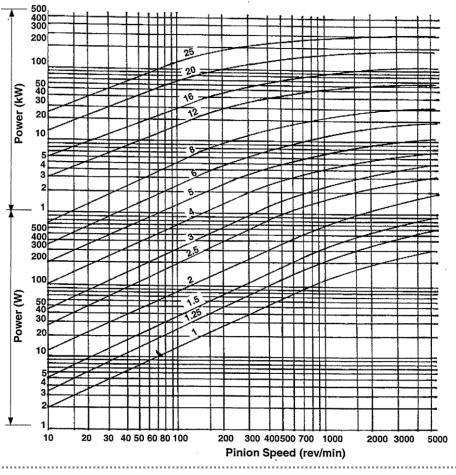
• Limiting Velocity Ratios


Type of gear pair	VR lower limit	VR upper limit
Worm and wheel	5	60
All others	1	5

• Pinion and wheel efficiency (η)

95-96% per stage

- Module (*M*) $M = \frac{d}{n} = \frac{D}{N}$
- Addendum (A) A = M
- Dedendum (B) B = 1.25M
- Tooth depth A + B = 2.25M



Module Selection Charts

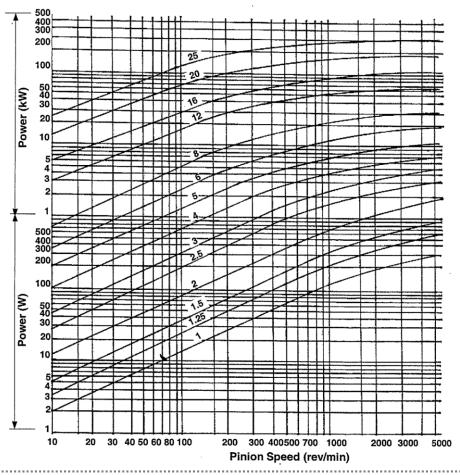
Example:

- Pinion Speed = 200rev/min
- Power = 200W

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

17

bristol.ac.uk

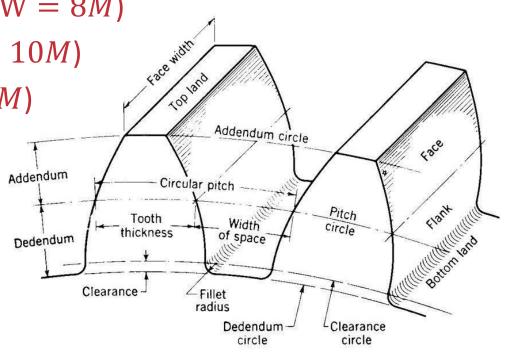

Module Selection Charts

Example:

- Pinion Speed = 200rev/min
- Power = 200W

Answer:

• Modules > 2.5

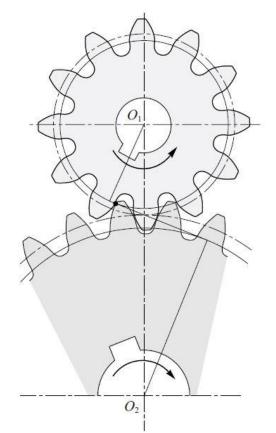


2017

bristol.ac.uk

- Face Widths
 - Relatively light loads (W = 8M)
 - Moderate loads (W = 10M)
 - Heavy loads (W = 12M)

20


2017

Gear Definition - Teeth Hunting

- Transmission forces are often cyclical
- Some teeth may experience higher forces than others
- Having the teeth hunt distributes the cyclic loading across all the teeth in gear
- Uniform wear

University of BRISTOL

 Also, maximise the number of cycles before two damaged gears will mesh with one another

Determining Hunting Tooth Frequencies

- Calculate the common factors (*CF*) between the teeth
- 2. Looking for the highest common factor (12)
- 3. Hunting Tooth Frequency (*HTF*)

$$HTF = \frac{GMF \times CF}{n \times N}$$

GMF = gear mesh frequency

Determining Hunting Tooth Frequencies

Example: 2000rpm, 24 pinion teeth, 84 wheel teeth

Determining Hunting Tooth Frequencies

 Calculate the common factors (*CF*) between the teeth Example:

2000rpm, 24 pinion teeth, 84 wheel teeth

Pinion (24 Teeth)	Wheel (84 Teeth)
1 x 24	1 x 84
2 x 12	2 x 42
3 x 8	3 x 28
4 × 6	4 x 21
	6 x 14
	7 x 12

bristol.ac.uk

2017

24

Gear Definition - Teeth Hunting Determining Hunting Tooth

Frequencies

- Calculate the common factors 1 (*CF*) between the teeth
- Looking for the highest 2. common factor (=12 in this case)

Example:

2000rpm, 24 pinion teeth, 84 wheel teeth

Pinion (24 Teeth)	Wheel (84 Teeth)
1 x 24	1 x 84
2 x <u>12</u>	2 x 42
3 x 8	3 x 28
4 × 6	4 x 21
	6 x 14
	7 x <u>12</u>

Determining Hunting Tooth Frequencies

University of BRISTOL

- Calculate the common factors (*CF*) between the teeth
- Looking for the highest 2. common factor (=12 in this case)
- Hunting Tooth Frequency 3. (HTF)

$$HTF = \frac{GMF \times CF}{n \times N}$$

Where *GMF* is the gear mesh frequency (GMF)

 $GMF = rpm \times n$

Example:

2000rpm, 24 pinion teeth, 84 wheel teeth

Pinion (24 Teeth)	Wheel (84 Teeth)
1 x 24	1 x 84
2 × 12	2 x 42
3 x 8	3 x 28
4 × 6	4 x 21
	6 x 14
	7 x 12

$$\frac{(2000 \times 24) \times 12}{24 \times 84} = \frac{48000 \times 12}{24 \times 84}$$

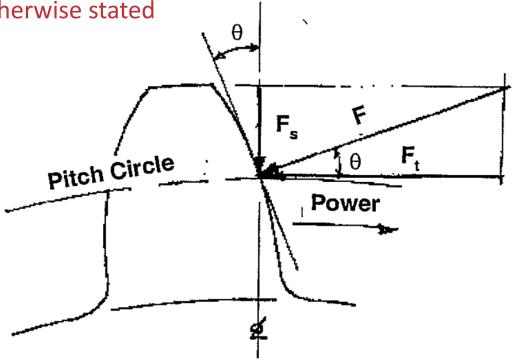
= 285.7 clashes per min

bristol.ac.uk

2017

Gear Forces

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5



Spur Gear Forces

- Pressure Angle (θ)
 - Typically 20 degrees unless otherwise stated

27

- Tangential Force (F_t)
 - $F_t = \frac{2T}{d}$
 - T = Torque (Nm)
- Separating Force (F_s)
 - $F_s = F_t \tan \theta$
- Resultant Force (F)
 - $F = \sqrt{F_t^2 + F_s^2}$

2017

bristol.ac.uk

Helical Gear Forces

- Tangential Force (F_t)
 - Same as for Spur
 - $F_t = \frac{2T}{d}$
 - T = Torque (Nm)
- Separating Force (F_s)
 - $F_s = \frac{F_t \tan \theta}{\cos \alpha}$, α = helix angle (assume 20 degrees unless otherwise stated)
- Axial Force (F_a)
 - $F_a = F_t \tan \alpha$
- Resultant Force (F)
 - $F = \sqrt{F_t^2 + F_s^2}$

2017

Example Gearbox

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

Gear Stage	1	2	3
VR			
Combined VR			
Module			
Pinion Teeth			
Pinion PCD (mm)			
Wheel Teeth			
Wheel PCD (mm)			
Hunting Tooth Frequency			
Efficiency			
Pinion Speed (rev/min)			
Wheel Speed (rev/min)			
Pinion Torque (Nm)			
Wheel Torque (Nm)			
Pinion Forces			
Tangential Force (kN)			
Separating Force (kN)			
Resultant Force (kN)			

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

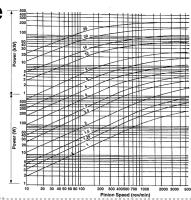
1. Put in the initial conditions

Gear Stage	1	2	3
VR			
Combined VR			
Module			
Pinion Teeth			
Pinion PCD (mm)			
Wheel Teeth			
Wheel PCD (mm)			
Hunting Tooth Frequency			
Efficiency	0.95 <i>(1)</i>	0.95 <i>(1)</i>	0.95 <i>(1)</i>
Pinion Speed (rev/min)	1000.00 (1)		
Wheel Speed (rev/min)			
Pinion Torque (Nm)	104.70 <i>(1)</i>		
Wheel Torque (Nm)			
Pinion Forces			
Tangential Force (kN)			
Separating Force (kN)			
Resultant Force (kN)			

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

- 1. Put in the initial conditions
- 2. Make an initial guess at the VR for each stage to generate the correct combined VR

Gear Stage	1	2	3
VR	5.00 <i>(2)</i>	5.00 <i>(2)</i>	5.00 <i>(2)</i>
Combined VR	5.00 <i>(2)</i>	25.00 <i>(2)</i>	125.00 <i>(2)</i>
Module			
Pinion Teeth			
Pinion PCD (mm)			
Wheel Teeth			
Wheel PCD (mm)			
Hunting Tooth Frequency			
Efficiency	0.95 <i>(1)</i>	0.95 <i>(1)</i>	0.95 <i>(1)</i>
Pinion Speed (rev/min)	1000.00 (1)		
Wheel Speed (rev/min)			
Pinion Torque (Nm)	104.70 (1)		
Wheel Torque (Nm)			
Pinion Forces			
Tangential Force (kN)			
Separating Force (kN)			
Resultant Force (kN)			


2017

bristol.ac.uk

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

- 1. Put in the initial conditions
- Make an initial guess at the VR for each stage to generate the correct combined VR
- 3. Determine Module

Gear Stage	1	2	3
VR	5.00 <i>(2)</i>	5.00 <i>(2)</i>	5.00 <i>(2)</i>
Combined VR	5.00 <i>(2)</i>	25.00 <i>(2)</i>	125.00 <i>(2)</i>
Module	2.00 <i>(3)</i>		
Pinion Teeth			
Pinion PCD (mm)			
Wheel Teeth			
Wheel PCD (mm)			
Hunting Tooth Frequency			
Efficiency	0.95 <i>(1)</i>	0.95 <i>(1)</i>	0.95 <i>(1)</i>
Pinion Speed (rev/min)	1000.00 (1)		
Wheel Speed (rev/min)			
Pinion Torque (Nm)	104.70 <i>(1)</i>		
Wheel Torque (Nm)			
Pinion Forces			
Tangential Force (kN)			
Separating Force (kN)			
Resultant Force (kN)			

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

bristol.ac.uk

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

- 1. Put in the initial conditions
- 2. Make an initial guess at the VR for each stage to generate the correct combined VR
- 3. Determine Module
- Calculate Pinion/Wheel PCDs & Hunting Tooth Frequency

Gear Stage	1	2	3
VR	5.00 <i>(2)</i>	5.00 <i>(2)</i>	5.00 <i>(2)</i>
Combined VR	5.00 <i>(2)</i>	25.00 <i>(2)</i>	125.00 <i>(2)</i>
Module	2.00 <i>(3)</i>		
Pinion Teeth	19.00 <i>(4)</i>		
Pinion PCD (mm)	38.00 (4)		
Wheel Teeth	95.00 <i>(4)</i>		
Wheel PCD (mm)	190.00 (4)		
Hunting Tooth Frequency	200.00 (4)		
Efficiency	0.95 (1)	0.95 (1)	0.95 (1)
Pinion Speed (rev/min)	1000.00 (1)		
Wheel Speed (rev/min)			
Pinion Torque (Nm)	104.70 <i>(1)</i>		
Wheel Torque (Nm)			
Pinion Forces			
Tangential Force (kN)			
Separating Force (kN)			
Resultant Force (kN)			

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

- 1. Put in the initial conditions
- 2. Make an initial guess at the VR for each stage to generate the correct combined VR
- 3. Determine Module
- 4. Calculate Pinion/Wheel PCDs & Hunting Tooth Frequency
- 5. Wheel Speed and Torques
 - Note: Efficiency loss

Gear Stage	1	2	3
VR	5.00 (2)	5.00 <i>(2)</i>	5.00 <i>(2)</i>
Combined VR	5.00 (2)	25.00 <i>(2)</i>	125.00 <i>(2)</i>
Module	2.00 (3)		
Pinion Teeth	19.00 (4)		
Pinion PCD (mm)	38.00 (4)		
Wheel Teeth	95.00 (4)		
Wheel PCD (mm)	190.00 (4)		
Hunting Tooth Frequency	200.00 (4)		
Efficiency	0.95 (1)	0.95 (1)	0.95 <i>(1)</i>
Pinion Speed (rev/min)	1000.00 (1)		
Wheel Speed (rev/min)	200.00 (5)		
Pinion Torque (Nm)	104.70 (1)	497.33 <i>(5)</i>	
Wheel Torque (Nm)	497.33 (5)		
Pinion Forces			
Tangential Force (kN)			
Separating Force (kN)			
Resultant Force (kN)			

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

- 1. Put in the initial conditions
- 2. Make an initial guess at the VR for each stage to generate the correct combined VR
- 3. Determine Module
- 4. Calculate Pinion/Wheel PCDs & Hunting Tooth Frequency
- 5. Wheel Speed and Torques
 - Note: Efficiency loss
- 6. Pinion & Wheel Forces

Gear Stage	1	2	3
VR	5.00 <i>(2)</i>	5.00 <i>(2)</i>	5.00 <i>(2)</i>
Combined VR	5.00 <i>(2)</i>	25.00 <i>(2)</i>	125.00 <i>(2)</i>
Module	2.00 <i>(3)</i>		
Pinion Teeth	19.00 (4)		
Pinion PCD (mm)	38.00 (4)		
Wheel Teeth	95.00 <i>(4)</i>		
Wheel PCD (mm)	190.00 (4)		
Hunting Tooth Frequency	200.00 (4)		
Efficiency	0.95 (1)	0.95 (1)	0.95 (1)
Pinion Speed (rev/min)	1000.00 (1)		
Wheel Speed (rev/min)	200.00 (5)		
Pinion Torque (Nm)	104.70 <i>(1)</i>	497.33 <i>(5)</i>	
Wheel Torque (Nm)	497.33 (5)		
Pinion Forces			
Tangential Force (kN)	5.51 <i>(6)</i>		
Separating Force (kN)	2.01 (6)		
Resultant Force (kN)	5.86 <i>(6)</i>		

A three-stage spur gearbox is to provide a 1:125 total gear ratio for a motor providing 500W @ 1000 rev/min.

- 1. Put in the initial conditions
- 2. Make an initial guess at the VR for each stage to generate the correct combined VR
- 3. Determine Module
- 4. Calculate Pinion/Wheel PCDs & Hunting Tooth Frequency
- 5. Wheel Speed and Torques
 - Note: Efficiency loss
- 6. Pinion & Wheel Forces
- 7. Repeat Steps 3-6 for the next stages

Gear Stage	1	2	3	
VR	5.00 <i>(2)</i>	5.00 <i>(2)</i>	5.00 <i>(2)</i>	
Combined VR	5.00 <i>(2)</i>	25.00 <i>(2)</i>	125.00 <i>(2)</i>	
Module	2.00 <i>(3)</i>			
Pinion Teeth	19.00 <i>(4)</i>			
Pinion PCD (mm)	38.00 (4)			
Wheel Teeth	95.00 <i>(4)</i>			
Wheel PCD (mm)	190.00 <i>(4)</i>			
Hunting Tooth Frequency	200.00 (4)			
Efficiency	0.95 <i>(1)</i>	0.95 <i>(1)</i>	0.95 <i>(1)</i>	
Pinion Speed (rev/min)	1000.00 (1)			
Wheel Speed (rev/min)	200.00 <i>(5)</i>			
Pinion Torque (Nm)	104.70 <i>(1)</i>	497.33 <i>(5)</i>		
Wheel Torque (Nm)	497.33 <i>(5)</i>			
Pinion Forces				
Tangential Force (kN)	5.51 <i>(6)</i>			
Separating Force (kN)	2.01 (6)			
Resultant Force (kN)	5.86 <i>(6)</i>			

Gearbox Design

Design Report

Gearbox Design

- Discuss the process you have taken to design the gearbox
- Compare a spur and helical gearbox that meets your criteria (not just gear ratio but also your PDS)
- Rationale behind your chosen design
- Gear arrangement and space optimisation
- Could perform checks on minimum shaft sizes & bearings

This Week

• Generate an initial spur and helical gear set to drive your mechanism

2017

bristol.ac.uk

- Select type and refine gears
 - Evaluate against forces, packaging and suitability for the application
 - You may have to compromise on your ideal gear ratio from your deployment modelling
 - Make sure you record you rationale

.....

2017

Happy Easter

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 5

