

Mechanism Feasibility Design Task Dr. James Gopsill

Contents

- 1. Shaft Design Feedback
- 2. Last Week
- 3. Deployment Modelling
 - Demo: Stopping the simulation at a specific point
 - Demo: Adding damping to a system
 - Demo: Four-bar mechanism
- 4. Building Your Deployment Model
- 5. Evaluating Motor & Gear Ratios
- 6. This Week

Machine Design: Shaft Design Feedback

Dr Chris Snider

	Stude	nt Score					
Initial PDS and diagrams	4.	.8%					
Design Report and Final PDS	24	1.3%					
Calculation Report	14.9% 6.1% 8.4%						
GA drawing of shaft							
Detailed drawing of shaft							
Report (content and presentation)	3.	.3%		-			
Total	61	8%		•			
	3						
	2.5		•		•		
	2				•		
	1.5		•		•		
	1		•			•	
	0.5					•	
	0	40%	50%	60%	70%	80%	0
	50%	40%	50%	Mark	1070	OU 70	5

bristol.ac.uk

. . .

Design Section	
PDS	
Thoroughness of specifications	65.89
Target values	74.69
Assessment performed / considered	69.59
Flow Diagram / Process Descriptio	n
Completeness	68.49
Clarity	84.79
Design Report	
Arrangement choice	68.99
Shaft refinement process	54.29
Bearing selection process	75.19
Sprocket and chain selection proces	s 70.19
Fixings - bearings	57.69
Fixings - sprocket	55.99
Fixings - spool	56.59
Materials selection	54.89
Safety factors	70.19
Component assembly	48.69
Maintenance	50.89
Manufacture	48.09
Operation	42.49
Assumptions made	61.69
Discretionary	57.39
Totals	60.89

- PDS very good

- Flow diagram or process description very good too
- Selection processes OK well described and justified for the most part
- Safety factors generally good
- Fixings:
 - Lots of detail given, generally OK in what was chosen
 - Keyways can't be square at the ends
 - Use shaft steps!
 - Be consistent circlips or locking rings, not both
 - Floating bearings need location at the extent of their motion

- Assembly / manufacture / maintenance was often a bit of an afterthought

- Assumptions were often unjustified

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 4

Calculation Section		-
		-
Process, Design Decisions and	d Iteration	-
Fundamentals calculated	96.6%	
Cable mass and length	54.2%	
Axial load	66.1%	
Material UTS and UYS, SYS	84.7%	-
FBDs	60.5%	
Reactions, moments	70.1%	V
Shear, bending, torsional stres	s 63.3%	•
Principal stresses and max she	ear 59.9%	
Safety factors	69.5%	
Stress concentration factors	53.7%	
Shaft dimensions and stresses	5 9.3%	
Component diameters	65.0%	
Worst cases	37.3%	
Discretionary	57.1%	
Totals	<mark>59.6%</mark>	

- Most people did well in most areas.
- Issues in presentation of information, rather than the analysis itself
- We didn't just want to see equations, we wanted to see how you used them and how this informed your design process
- Stress concentrations often just showed the graph, but didn't show calculations

⁸ Worst case scenarios / analysis scenarios:

- Why were you doing your analysis the way you were?
- Cable wound or unwound? Point loads or UDLs? Cable in the middle or at the end?
- This was usually not discussed in much detail

37.3' 59.3'
59.3
93.2
59.9
65.4
55.6
60.9
57.0
57.6
81.4
50.8
66.1
83.1
66.1
45.8
89.8
46.9
62.1
61.0
59.3
47.5
51.0 56.0

Lost the most marks:

- Do NOT hatch rotationally symmetric components cut along longitudinal axis unless absolutely necessary
- Scales should be standard (2:1, 4:1, 5:1, 10:1, 20:1, 50:1)
- Missing chamfers, centrelines, tolerances, surface finish
- Default values surface finish, tolerance, machining
- Dimensions
 - Should all come from a datum face to avoid tolerance build-up
 - Should not sit inside the part
- Missing detail views that would help with small details
- Detail views should be well labelled, lined up, in order
- Should show fixings for all components in detail
- Should show overall sizes, critical dimensions (i.e. distance between mounting points)
- Parts list OK part name, part number, quantity, material, code (if applicable). Balloons should be lined up and in order where possible

Report (Presentation)

Award marks for report structure and layout only. The above (

Area	
Referencing	74.6%
Titles and labelling	74.6%
Figures	66.1%
Quality of English	67.5%
Structure	61.0%
Discretionary	62.0%
Totals	65.9%

Good overall

Some issues in structure and inter-linking – tying together the analysis and its implications for the design and the process that you followed.

Design section benefits from images as examples – don't describe the bearing, show us a picture of it!

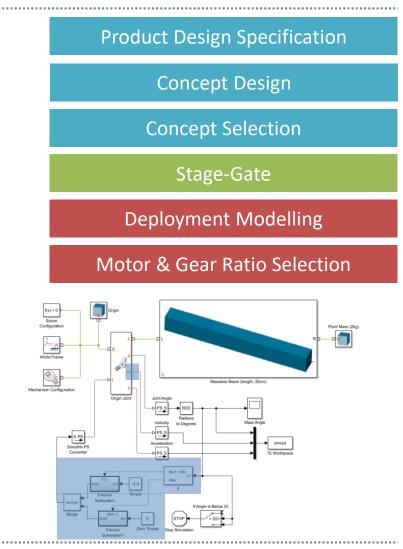
Steps are a good thing!

- Lots seemed to be aiming for a constant diameter
- Steps give a locating surface with high accuracy how do you get your fixings in the right place?
- Not much effort to machine
- Constant diameter can make assembly difficult or impossible

Linking analysis with design process

- Often kept separate
- We want to see the values you have achieved in the design report as part of your rationale, and then flick to the calculations to see how you reached those values

Evidence of iteration using analysis and stresses was often poorly described

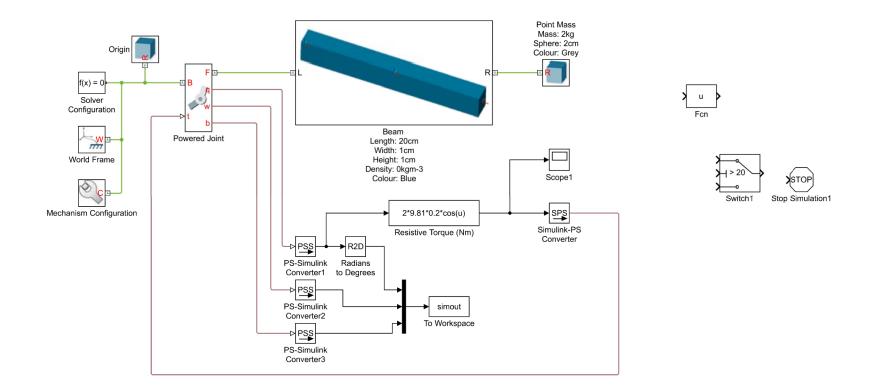

Last Week

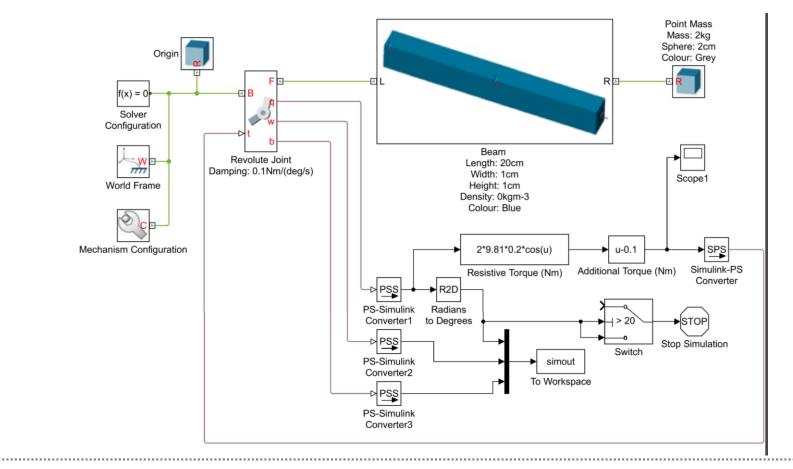
Introduced you to:

- Systems Modelling in Simulink
- Modelling a Pendulum

Where you should be at:

- Boundary Calculation
- Modelled Pendulum
- Powering a Single Mass by a Motor

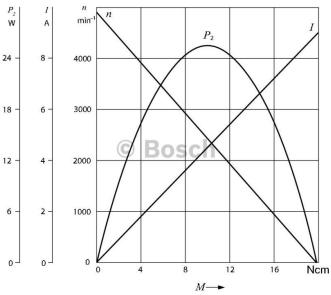

Happy to Continue?



Stopping a simulation at a specific point

Stopping a simulation at a specific point

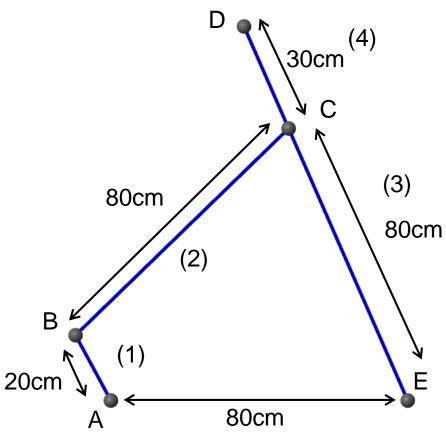
Damping



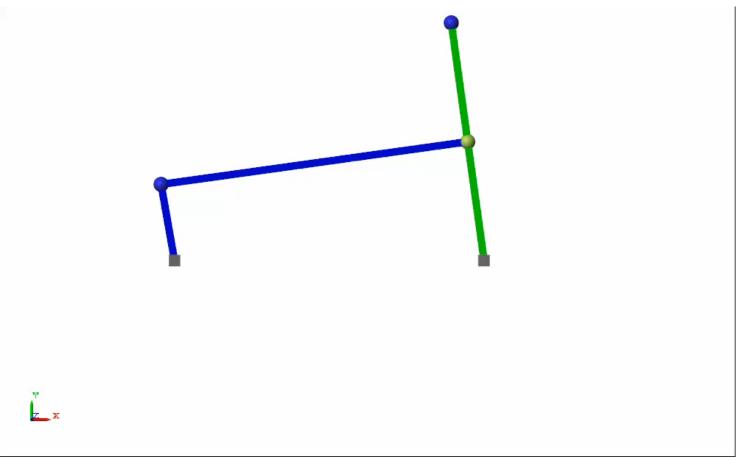
2017

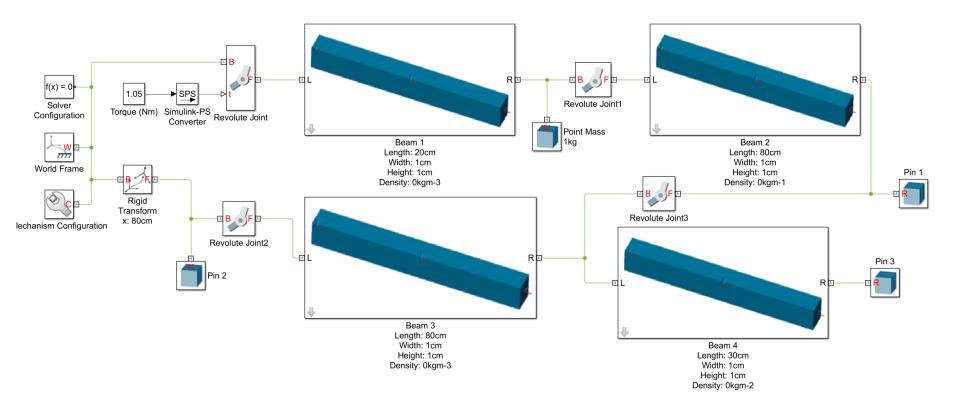
Linear Dampers Rotational Dampers Provide a smooth motion

- Prevent people
 trapping their fingers 12 -
- Safety if an element breaks
- Motor over-speeding


14

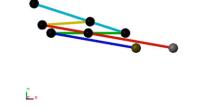
Design & Manufacture 2 – Mechanism Feasibility Design Lecture 4


Demo: Four-Bar Mechanism


Demo: Four-Bar Mechanism

2017

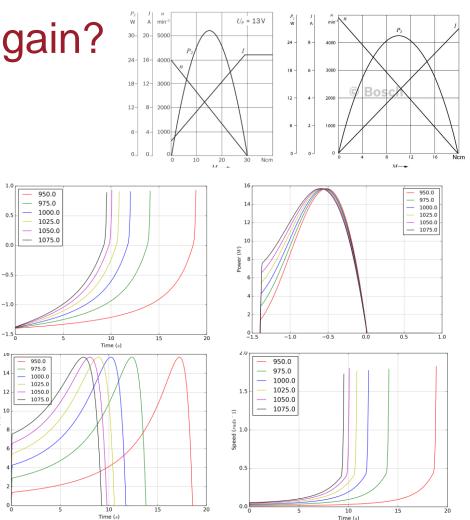
Demo: Four-Bar Mechanism


17

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 4

Designing Your Mechanism Model

- Build pendulum model powered by a motor & gearbox
- 2. Build a separate multi-bar mechanism of your model
- 3. Combine the two
- 4. Add damping to prevent the motor over-speeding
 - Otherwise place an IF statement to represent 'disconnecting the motor' from the mechanism at higher speeds



Why are we doing this again?

- To investigate various motor and gearbox ratio combinations
- Evaluate the energy required by the system to deploy
- Determine the damping required to keep the motor within its operating window

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 4

19

This Week

- Complete your mechanism model in Simulink
- Iterate a variety of motor, gear ratio & damping values

20

 Use this to support your decision on the appropriate motor, gear ratio and damping required