

Mechanism Feasibility Design Task Dr. James Gopsill

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

Contents

- 1. Last Week
- 2. The Convertible Roof System
- 3. Boundary Calculations
- 4. Modelling the Deployment using Simulink
 - Pendulum
 - Fix it in position
 - Deploy the pendulum
- 5. Stage-Gate Reminder
- 6. This Week

But First!

Points of Clarification

- Soft-top roof lecture 2
- No sliding pins (time constraints)
 lecture 2
- Unable to get Linkage on the University PCs this year
- Your criteria is your PDS

			9		\bigcirc	\bigcirc	0
	Criteria	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5	Concept 6
	Ease of use		+	+	-	-	S
	Ae sthetic appeal		-	+	+	-	-
	Manufactura bility		+	+	-	+	+
		DA	+	-	+	-	+
		UT	S	+	-	+	+
	Safety	M	-	+	S	-	+
	Σ+		3	5	2	2	4
\square	Σ•		2	1	3	4	1
\square	25		1	0	1	0	1
	Net Score	0	1	4	-1	-2	3
	Rank	4	3	1	5	6	2
	Continue or combine?	Combine	Combine	Yes	No	No	Yes

Last Week

We looked at:

- Product Design Specifications Techniques
- Concept Generation Techniques
- Concept Selection Techniques

Where we should be:

- Formed Product Design Specification
- Generated Concept Designs
- Started to Select a Concept to Carry Forward
- Ready for the Stage-Gate Submission

2017

Systems Modelling

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

Systems Modelling

The development of models that simulate complex engineering systems that often span multiple engineering disciplines

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

bristol.ac.uk

Systems Modelling

Not forgetting!

- Fuel system
- Cooling system
- Lubrication system
- Engine start system

Other Jet Engines

- Varying intake
- Reheat

Systems Modelling (Why?)

- Global optimisation of the products design
- Performance analysis
- Sensitivity analysis
- Product health monitoring
- Diagnosis of product issues
- Pass-off tests

2017

bristol.ac.uk

Convertible Roof as a System

Electro-mechanical system

- 1. Electric Motor
- 2. Worm Gear
- 3. Multi-Stage Gearbox
- 4. Connecting Rod
- 5. Multi-Bar Mechanism

bristol.ac.uk

Convertible Roof as a System

Energy transfer through the system

- Power to the motor provides initial torque
- Torque travels through the gear box where the gear ratio will change the amount of torque delivered
- Which then drives the mechanism against gravity (initially)

Convertible Roof as a System

https://www.youtube.com/watch?v=UqcKYFU6VIg

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

2017

Boundary Calculations

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

Boundary Calculations (Why?)

- Help us determine initial conditions for our models
- Provide a sanity check for our models
- Provides evidence for our initial component selection

14

What are our boundary conditions and what do we need to know?

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

- What torque do you require to get the mechanism moving?
 - Assume a single mass
 - Think centre of mass

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3 bristol.ac.uk

- What torque do you require to get the mechanism moving?
 - Assume a single mass
 - Think centre of mass
- What motor and gear ratio is required to achieve this?
 - Select a motor from Bosch
 - Refer to your PDS when selecting the motor
 - Determine the gear ratio required
 - Note: you will need a gear ratio!
 - Record your rationale for your choice

http://www.bosch-ibusiness.com/boaaelmoocs/category/D.C.%20motors%20without%20transmission/114?locale=en_GB

17

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

Design Report

- Deployment Modelling (Boundary Calculations)
 - How did you calculate the torque required?
 - What were your assumptions?
 - From this information and your PDS, how did you determine the initial gear ratio & motor

2017

Modelling the System

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

Modelling the System

What do we want to know?

- Energy required to deploy the roof
- Time to deploy the roof
- To help us determine the final Motor, Gear Ratio and Damping values

20

Modelling the System

What is changing over time?

- Torque provided by the motor
- Force due to gravity
- Inertia of the mechanism
- Mechanism
 - Acceleration
 - Velocity
 - Displacement

What remains constant?

- Gear ratio
- Mass of mechanism

Modelling the System

What assumptions are we making?

- Friction
- Air Resistance
- ?

If included, what effect would they have?

This is important to know so we can be analyse the results in the appropriate context. (Put this in your report)

22

bristol.ac.uk

How are we going to model this?

- Simulink
- A block modelling language that is great for modelling systems.
- Blocks represent calculations that need to be performed.
- Handles the iterations and time domain for us
- We are going to use it to help us model the dynamics of a multi-bar mechanism

Demo - Pendulum

24

bristol.ac.uk

Co-ordinate System

Fixing It Into Position

Calculate the torque required to oppose the motion

Fixing It Into Position

27

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 3

bristol.ac.uk

Deploying the Single Mass

Deploying the Single Mass using a Motor

- Motor Torque is a Function of Angular Velocity
 - Motor Curves from Bosch
 - Use Angular Velocity as the feedback
- The gear ratio will change the speed and motor
 - The motor will be running at a different speed to the mechanism
- Note: Next week we will look at damping so that we can keep the motor in its operating window!

Stage-gate: Submission

- Product Design
 Specification (Current Progress, A4 page)
- Chosen Concept Model
 - Images
 - Paragraph discussing main features
- Online Submission Blackboard
- 5% Pass/Fail Criteria

No	Requirement	Must/Wish	Method of Assessment	Success Criteria	Will be assessed during the feasibility stage
1					
2					
3					

This Week

- Boundary Condition Calculation
 - What torque is required to get your mechanism moving?
 - Assume a single mass
- Generate the Demo Models
 - Pendulum
 - Fixed Pendulum
 - Deployment Pendulum
 - Templates on the website
 - Model your single mass (from your boundary calculation!) moving from start to finish using the motor and gear ratio selected

31

- Next Week
 - Demo: Four-Bar Mechanism with Damping

 ∞

mg