

Mechanism Feasibility Design

Dr. James Gopsill

Contents

- 1. Before Reading Week
- 2. Product Design Specification
 - Refresher
 - Report Section Guidelines
- 3. Concept Generation
 - Present 6 Techniques
 - Report Section Guidelines
- 4. Concept Selection
 - Present 4 Techniques
 - Report Section Guidelines
- 5. This Weeks Task
- 6. Next Weeks Lecture

But First.

Well done on submitting the first exercise!

3

Generated a Product Design SpecificationBending stressesPerformed some initial calculations (Torque, Power, Speed)Node selectionResolved forces for two arrangementsChain & sprocket selectionShear force diagramsBearing selectionBending moment diagramsStress concentrationsTorque through the shaftSafety factorsConcept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Familiarised yourself with the exercise	Torsional stresses
Performed some initial calculations (Torque, Power, Speed)Node selectionResolved forces for two arrangementsChain & sprocket selectionShear force diagramsBearing selectionBending moment diagramsStress concentrationsTorque through the shaftSafety factorsConcept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Generated a Product Design Specification	Bending stresses
Resolved forces for two arrangementsChain & sprocket selectionShear force diagramsBearing selectionBending moment diagramsStress concentrationsTorque through the shaftSafety factorsConcept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Performed some initial calculations (Torque, Power, Speed)	Node selection
Shear force diagramsBearing selectionBending moment diagramsStress concentrationsTorque through the shaftSafety factorsConcept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Resolved forces for two arrangements	Chain & sprocket selection
Bending moment diagramsStress concentrationsTorque through the shaftSafety factorsConcept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Shear force diagrams	Bearing selection
Torque through the shaftSafety factorsConcept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Bending moment diagrams	Stress concentrations
Concept selectionFixings & fastenersBeam bendingDesign report & detailed drawing	Torque through the shaft	Safety factors
Beam bending Design report & detailed drawing	Concept selection	Fixings & fasteners
	Beam bending	Design report & detailed drawings

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Before Reading Week

Introduced you to:

- Multi-bar mechanisms
- Exercise
- Design Process

Where you should be at:

- Formed pairs
- Signed up and received Lego kits
- Familiarised yourself with the exercise

bristol.ac.uk

(a) - Ideal position where the deployment mechanism can be connected to the vehicle (b) - Windscreen connection point

.....

PDS format to follow

No.	Requirement	Must/Wish	Method of Assessment	Success Criteria	Will be assessed during the feasibility stage
1	Deployment Time	Wish	Simulink deployment model	<20secs	Yes, and where in the report?
2	Minimise mass of the convertible roof				
3					

- System-level
- Component-level (Motor, Gearbox & Mechanism)

Starting points

- Mass
- Deployment Time
- Packing space
- Interior space
- Energy consumption

Should be as exhaustive as possible

Include items that you will not be able to assess during the feasibility stage

Remember to reference material used to generate requirements

What can you discover on Google in 5mins?

Design Report

Introduction

- A few paragraphs discussing the context of the problem.
- Why would you want to make a convertible car?
- What is the market and market size?

• Product Design Specification

- A couple of paragraphs describing how you formed the PDS and the process you have followed
- Discuss the PDS table you have generated
- Are you going to weight any of the requirements?

2017

Q & A

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Concept Generation Methods

Concept Generation – Competitor Analysis

Competitor Analysis

Evaluate their designs against your PDS to help steer your design

Quickly generate viable designs

Provides confidence that the design will work

2017

Concept Generation - Brainstorming

Competitor Analysis

Brainstorming

Brainstorming: a technique by which a group attempts to find a solution for a specific problem by amassing all the members' ideas spontaneously.

A set of rules devised by Alex Osborn in 1941 to improve the creation of new ideas in business meetings:

No criticism of ideas
Go for large quantities of ideas
Build on other ideas or combine them
Encourage wild and unusual ideas

Using these rules he found that more ideas were created.

"Quantity produces quality"

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Concept Generation - Brainstorming

Competitor Analysis

Brainstorming

Post-it notes

Lecture 2

Brain-sketching

Design & Manufacture 2 – Mechanism Feasibility Design 15

Competitor Apolycic

Concept Generation - Brainstorming

Drainatarmina

Competitor Analysis	Drainstonning	
Assign a facilitator	t's their job to make sure on track, and to record ide	EVERYBODY is contributing, and to keep eas.
Record everything	Every idea that anyone sav	ys should be drawn or written down.
Build on others	Jse everyone else's ideas	as a starting point for more of your own.
Contribute	Everyone should speak or	draw. Take it turns if required.
Park ideas	f you are struggling or hit	a dead end, park that idea until later.

Concept Generation – Morphological Charts

Competitor Analysis

Brainstorming

Morphological Charts

Good for a PDS that has requirements that can be that are not highly dependent on one another

Look at developing sub-systems that meet specific requirements

You can then work through the matrix to quickly generate a large number of system designs

2017

bristol.ac.uk

Morphological Analysis for vegetable collection system with selections (Haik and Shahin 2011: 175)

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Concept Generation - Prototyping

Competitor Analysis	Brainstorming	Morphological Charts	Prototyping
Refine the concepts to the s unbiased comparisons to be Identify interface issues that sketching	ame level, which enables e made t were not captured through	WHY PROTOTYPE?	v (QQQqqq
Identify design issues earlie reduce the number of engin in the design process	r in the design process and eering changes required late	Design "Branching Exploration" Cr Bill Buxton, Si	Prototyping "Incremental iterative refinement" ketching User Experiences
Enables wider stakeholder e	engagement		
Improves the number of fur developed	actional designs to be		
The tools used to prototype specific element of the design	can focus a designer on a growing of the second sec	oumans, R.J., 2011. The effects of physical prototyping eduction of design fixation. <i>Design Studies</i> , <i>32</i> (2), pp.1. 'iswanathan, V.K. and Linsey, J.S., 2012. Physical model tudy of functionality, novelty and variety of ideas. <i>Jour</i> <i>Design</i> , <i>134</i> (9), p.091004.	g and group work on the 15-138. Is and design thinking: A nal of Mechanical
Design & Manufacture 2 – Mech	nanism Feasibility Design	18	bristol.ac.uk

Concept Generation – For this design exercise

Competitor Analysis Brainstorming Prototyping Lego Sets Linkage Modeller

2017

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Concept Generation

Design Report

- Concept Generation
 - Introduce this section by informing us on the strategy you applied to generate your concepts
 - Come up with a systematic approach to reporting your concepts
 - Present figures in a consistent manner (for example, deployed and retracted views captured from linkage)

2017

- Provide the same level of detail for each concept
- Perform the same rough calculations to each concept
- Be impartial at this stage

2017

Q & A

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

2017

Concept Selection

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Controlled Convergence

Devised by Pugh in the 1980s

Matrix comparing requirements and concepts

Select one as a datum

Iterate through each concepts (+,- or s)

Sum values and rank concepts

Check if any concepts could be combined

		\mathcal{D}		\sim		\odot
Criteria	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5	Concept 6
Ease of use		+	+	-	-	6
Ae sthetic appeal		-	+	+	-	-
Manufactura bility		+	+	-	+	+
Low weight	DA	+	-	+	-	+
Energy efficiency	τu	6	+	-	+	+
Safety	Μ	-	+	S	-	+
Σ+		3	5	2	2	4
Σ.		2	1	3	4	1
23		1	0	1	0	1
Net Score	0	1	4	-1	-2	3
Rank	4	3	1	5	6	2
Continue or combine?	Combine	Combine	Yes	No	No	Yes

Pugh, S., 1991. Total design: integrated methods for successful product engineering. Addison-Wesley.

University of BRISTOL

Concept Selection

Controlled Convergence

Multi-Criteria Decision Analysis

Score each concept against the requirements using a lickert scale scoring metric

Can provide a weighting to each criteria to highlight priorities

Adjust the scores by the weighting

Rank each concepts and make a judgement on the one to select

		Project A		Project B	
	Weighting	Score	Weighted	Score	Weighted
Criteria:					
Compatibility with strategic objectives	7	4	28	4	28
High Market Value	9	4	36	4	36
Genuine advantages over competition	9	4	36	5	45
Generate or save large amounts of money	10	4	40	4	40
Contact with the market	8	4	32	4	32
Technical expertise available	4	5	20	3	12
Commercial expertise available	7	1	7	1	7
Project management resources available	4	3	12	3	12
Clear route for implementation	4	2	8	2	8
Evolving/lurking risk factors	6	2	12	2	12
Compliance with industry standards	3	2	6	2	6
Total	450	44	292	46	317
% of Total			65%		70%
Rank			2		1

Controlled Convergence

Multi-Criteria Decision Analysis

Pair-Wise Comparison

How do you weight your requirements?

One method:

Compare each requirement to one another and decide which one takes priority

Re-order the matrix to define a priority listing

Function		Α	В	С	D	Ε	F	G	Η	I
functionality	Α	-	Α	С	D	Α	F	Α	AH	I
durability	В	-	-	С	D	В	В	В	Н	BI
quality	С	-	-	-	D	С	F	С	Н	С
affordability	D	-	-	-	-	D	F	D	D	I
manufacturability	E	-	-	-	-	-	F	Е	Н	Е
usability	F	-	-	-	-	-	-	F	FH	I
maintainability	G	-	-	-	-	-	-	-	Н	I
safety	Н	-	-	-	-	-	-	-	-	Н
marketability	I	-	-	-	-	-	-	-	-	-

Controlled Convergence	Multi-Criteria Decision Ar	alysis	Weighted	Objectives	Tree
	Pair-Wise Comparison			Good reproducibility of friction	Insensitivity To moisture
Define a set of high-level requi you're designing	rements for the system		Reliable operation 0.5	levels 0.6 0.3 Tolerance of overloads	0.8 0.24
Breakdown each requirement requirements that are weighte	to a set of sub- d	High performanc mechanical brake 1.0 1.0	e Low mass 0.3 0.3	0.4 0.2 Structurally efficient	0.2 0.06
Keep breaking down the requi you can have a method of asse	rements to a level where essing it	Relative weighti Absolut weightir	Compact 0.2 0.2	0.5 0.15 Thermally efficient 0.5 0.15	Σ
Design & Manufacture 2 – Mechanisr	n Feasibility Design 26		-	bris	stol.ac.

2017

Lecture 2

Controlled Convergence	Multi-Criteria Decision Analysis	Weighted Objectives Tree
Dot Sticking	Pair-Wise Comparison	

Present each design

Useful in very early-stage design problems

Enables wider stakeholder engagement

Anonymous feedback

Quick evaluation of designs

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

Concept Selection – for this exercise

28

Controlled Convergence Strategy

		0		ß	$\langle \neg \rangle$	0
Criteria	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5	Concept 6
Ease of use		+	+	-	-	S
Aesthetic appeal		-	+	+	-	-
Man ufactu ra bility		+	+	-	+	+
Low weight	DA	+	-	+	-	+
Energy efficiency	υT	S	+	-	+	+
Safety	Μ	-	+	S	-	+
Σ+		3	5	2	2	4
Æ		2	1	3	4	1
25		1	0	1	0	1
Net Score	0	1	4	-1	-2	3
Rank	4	3	1	5	6	2
Continue or combine?	Combine	Combine	Yes	No	No	Yes

Design Report

- Concept Selection
 - Discuss and present your controlled convergence selection process for your three concepts
 - Provide a few paragraphs discussing your final selection and whether there have been any refinements from your selection process

29

2017

Q & A

This Week

Generate three concepts for you mechanism Compare them through controlled convergence Select a concept to carry forward

And! Write it up as you go along.

Recommended: Use the sessions to help your with the task as well as how it should be reported.

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2 2017

Next Weeks Lecture

Systems Modelling

32

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

.....

2017

Thank You

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 2

