

Mechanism Feasibility Design Task Dr. James Gopsill

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

Contents

- 1. Teaching Aims
- 2. Multi-Bar Mechanisms
- 3. Feasibility Design
- 4. Exercise
- 5. Design Process
- 6. Previous Years
- 7. Timeline & Resources
- 8. Skills Applied
- 9. After Reading Week Prep

2017

Teaching Aims

- 1. Provide awareness of mechanisms and their applications
- 2. Further practice design thinking, rationale capture and build on the feedback from the previous coursework
- 3. Apply system modelling tools to preliminary design scenarios
- 4. To generate a feasible mechanism design for the design task
- 5. Practice your theoretical engineering knowledge in an unconstrained and unfamiliar environment

Multi-Bar Mechanisms are often used to:

- Translate motions & forces
- Improve the performance of a product
- Simplify the control system of a product
- Increase the efficiency of a product
- Deploy a product

Translation of Motion & Force

- Piston
- Window Hinge
- Windscreen Wipers
- Locking Pliers/Vice Grips
- Provide a Mechanical Advantage

Improving the Performance of a Product

- Widely used in suspension design
- Double wishbone
- Enables camber control as a car rolls (positive camber gain)

negual length, non-parallel link double wishbones

Equal length, parallel link double wishbones

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

7

Simplify the Control System of a Product

- Level-luffing cranes
- Maintain a steady platform

https://www.youtube.com/watch?v=Qhis3_I2_-0

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

8

Deploying a Product

- Scissor Jacks
- Convertible Roofs
- Satellite Solar Panels

And Art!

https://www.youtube.com/watch?v=PG2Xv2ivZZU

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

9

Research at Bristol

- Modelling chewing
- Develop Capsules for Drug Delivery
- Spherical mechanisms

Feasibility Design

- 1. Develop your specification
- 2. Generate concepts
- 3. Concept selection
- 4. Preliminary layout & design

12

Exercise

To design a mechanism to deploy and retract a car convertible roof

Exercise

(b) - Windscreen connection point

Product Design Specification

No.	Requirement	Must/Wish	Method of Assessment	Success Criteria	Will be assessed during the feasibility stage
1					
2					
3					

Teaching Aims	Multi-Bar Mechan	isms	Feasibility Desig	in Exe	ercise	
Design Process	Previous Years	T&R	Skills Applied	Prep	2	2017

Product Design Specification

Concept Design

Product Design Specification

Concept Design

Concept Selection

		9		\bigcirc	\bigcirc	\odot
Criteria	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5	Concept 6
Ease of use		+	+	-	-	S
Ae sthetic appeal		-	+	+	-	-
Manufactura bility		+	+	-	+	+
Low weight	DA	+	-	+	-	+
Energy efficiency	2	S	+	-	+	+
Safety	Ζ	-	+	S	-	+
Σ+		3	5	2	2	4
Σ-		2	1	3	4	1
25		1	0	1	0	1
Net Score	0	1	4	-1	-2	3
Rank	4	3	1	5	6	2
Continue or combine?	Combine	Combine	Yes	No	No	Yes

Controlled Convergence Andy Greener 1st Year Notes

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

Teaching Aims	Multi-Bar Mechanisms		Feasibility Desig	n Exe	ercise
Design Process	Previous Years	T&R	Skills Applied	Prep	201

No.	Requirement	Must/Wish	Method of Assessment	Success Criteria	Will be assessed during the feasibility stage
1					
2					

Product Design Specification

Concept Design

Concept Selection

Stage-Gate

Product Design Specification & Linkage Concept Design Submission (5%, pass/fail)

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

1st Year & A-Level Engineering Maths Equations of Motion, Torque, Gravity, Gear Ratios & Motor Power

bristol.ac.uk

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

Product Design Specification

Concept Design

Concept Selection

Stage-Gate

Deployment Modelling

Motor, Gear Ratio & Damping Selection

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

- Stage-gate submission (5%, pass/fail)
- Design Report (LaTeX Template provided)
 - Title page
 - Introduction (1 page)
 - Product Design Specification (1 page, 10%)
 - Concept Design & Selection (2 pages, 10%)
 - Deployment Modelling (3 pages, 15%)
 - Motor, Gear Ratio & Damping Selection (3 pages, 15%)
 - Gearbox Design (3 pages, 15%)
 - Solution Specification (1 page)
 - Conclusion & References (1 page)
 - A3 Print Out of Simulink Model (10%)
 - A3 Assembly Drawing of the Gearbox (10%)

Additional Notes:

- 10% of the mark is awarded to the quality of the report writing
- The reference list may go beyond the 15 page limit

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

21

22

https://www.youtube.com/watch?v=5yb7UNZG4nk

Design & Manufacture 2 – Mechanism Feasibility Design Lecture 1

Teaching Aims	Multi-Bar Mechanisms		Feasibility Desig	gn Exe	ercise
Design Process	Previous Years	T&R	Skills Applied	Prep	201

Timeline

Academic Week	Date	Time	Туре	Content
13	Monday 23rd January 2017	15:00-16:00	Lecture	Introduction to the Overall Course & Constrained Design Task Introduction
13	Tuesday 24th January 2017	9:00-13:00	Tutorial	Form groups, Exercise Familiarisation & Product Design Requirements
13	Tuesday 24th January 2017	14:00-15:00	Lecture	Reactions, Bending and Macaulay Notation
14	Tuesday 31st January 2017	9:00-13:00	Tutorial	Reactions and Bending Moments
14	Tuesday 31st January 2017	14:00-15:00	Lecture	Bearing Selection
15	Tuesday 7th February 2017	9:00-13:00	Tutorial	Bearing Selection
15	Tuesday 7th February 2017	14:00-15:00	Lecture	Sprocket and Safety Factors
15	Friday 10th February 2017		Submission	Shear Force & Bending Moment Diagrams (Blackboard)
16	Tuesday 14th February 2017	9:00-13:00	Tutorial	Sprocket and Chain Selection
16	Tuesday 14th February 2017	14:00-15:00	Lecture	Fixings and Submission Details
17	Tuesday 21st February 2017	9:00-13:00	Tutorial	Fixings
17	Tuesday 21st February 2017	14:00-15:00	Lecture	Introduction to the Feasibility Design Task
18		ading Week		
19	Monday 6th March 2017		Submission	Constrained Design Report Submission (Office and Blackboard)
19	Tuesday 7th March 2017	9:00-13:00	Tutorial	Form pairs, Exercise Familiarisation & Product Design Specification
19	Tuesday 7th March 2017	14:00-15:00	Lecture	Product Design Specification, Concept Design & Selection
20	Tuesday 14th March 2017	9:00-13:00	Tutorial	Concept Design & Selection
20	Tuesday 14th March 2017	14:00-15:00	Lecture	Modelling the Deployment of the Mechanism 1
20	Friday 17th March 2017		Submission	PDS & Linkage Model of Selected Concept (Blackboard)
21	Tuesday 21st March 2017	9:00-13:00	Tutorial	Deployment Modelling
21	Tuesday 21st March 2017	14:00-15:00	Lecture	Modelling the Deployment of the Mechanism 2
22	Tuesday 28th March 2017	9:00-13:00	Tutorial	Deployment Modelling and Motor & Gear Ratio Selection
22	Tuesday 28th March 2017	14:00-15:00	Lecture	Gearbox Design
				Easter
23	Tuesday 25th April 2017	9:00-13:00	Tutorial	Gearbox Design
23	Tuesday 25th April 2017	14:00-15:00	Lecture	General Assemblies & Submission Details
24	Tuesday 2nd May 2017	9:00-13:00	Tutorial	Report Writing and Submission
24	Tuesday 2nd May 2017	14:00-15:00	Lecture	Free
24	Friday 5th May 2017	14:00-15:00	Submission	Feasibility Design Report Submission

eaching Aims	Multi-Bar Mechanisms		Feasibility Desig	n E	Exercise	
esign Process	Previous Years	T&R	Skills Applied	Prep	C	2017

Resources

← → C Secure | https://jamesgopsill.github.io/MechanismDesign/

 Mechanism Design
 Teaching Aims
 Design Exercise
 Design Process
 Additional Information

☆

bristol.ac.uk

Design & Manufacture 2

- <u>https://jamesgopsill.github.io/</u> <u>MechanismDesign/</u>
- YouTube Demos for Simulink
- All New This Year!

Mechanism Design

Teaching Aims

Continuning on from the Shaft Design exercise, the Mechanism Design project looks to:

- provide awareness of mechanisms and their applications
- further practice design thinking, rationale capture and build on the feedback from the previous coursework

- apply system modelling tools to in prelimarny design scenarios
- practice your theoretical engineering knowledge in an unconstrained and unfamiliar environment

This site provides the resources you will need to work through thise exercise, although it is important to note that you are expected to do your own research to help you through the design problem.

To overcome this challenge, you will need to bring your engineering skill and knowledge that you have gained from all the modules you have completed so far.

Feedback

- 6 x 4 Hour Tutorial Sessions
- 8 Academic Staff Available to Answer Questions
- Shaft Design Report
- Stage-Gate
- Mechanism Design Report

Engineering Knowledge & Skills

After Reading Week

- Pair Up!
- Familiarise yourself with the exercise
- Initial research to build your Product Design Specification

.....

20 February 2017

Q & A

